If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+10t=9=0
We move all terms to the left:
t^2+10t-(9)=0
a = 1; b = 10; c = -9;
Δ = b2-4ac
Δ = 102-4·1·(-9)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{34}}{2*1}=\frac{-10-2\sqrt{34}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{34}}{2*1}=\frac{-10+2\sqrt{34}}{2} $
| -6/5x-4=-46 | | s^2+42-21=0 | | (5r+40)/15=(4r-24)/4 | | -16+5x=4(3x+) | | 7x2=19x | | 5r+40/15=4r-24/4 | | (4x+1)(3x-7)-2x(6x+5=0 | | 51+7-x=36 | | x-475=261 | | X2+36=13x | | t+4/7=5-4/7 | | -63=3-3(2-4p) | | -16+5x=8x+12 | | 200=5(4+6v) | | h2-6h=16 | | h^2-6h=16 | | 4(2x-3)-2=4(x-5)+26 | | 4x-2x+9=13 | | y=-6.5+15 | | 4+5x=-2 | | 3(2x+1)=17 | | 2x+30=-20-x | | 7(x+2)(x-40)=-2 | | (8-x)^2=(2x+4)(1-x) | | (x+3)-5=0 | | 26d/7+6=19 | | 2x+5x-18=3 | | x+(3x-7)=4 | | 10=27s/8-8 | | 3n+2/3=15/3 | | 6-2x^2=4x | | 17e-3/4=39/16 |